Solutions

<u>Problem 1</u>: Technology Boosters

In order to enable the scaling of CMOS into the nanometer regime and keep a high performance, a series of so called technology boosters (by definition, a technology innovation that improves some of the device performance in static and/or dynamic operation) are applied, such as strain, high-k dielectrics, metal gate, new channel replacement materials, etc. Select the correct statements concerning such performance boosters.

- 1. **Tensile strain** improves the mobility of both electrons and holes and, therefore, is a performance booster for both n- and p-type channel MOSFETs.
- 2. A Ge (germanium) channel in a p-type MOSFET can be considered a technology booster. Explain why or why not.
- 3. A InAs channel in a n-type MOSFET can be considered a technology booster.

 Explain why or why not.
- 4. The **high-k dielectric** allows for having the same capacitance of the gate with a thicker dielectric layer (compared with SiO2) for the same capacitance, and reduces the gate leakage current.
- 5. The **mobility of electrons** in strained channels can be boosted by more than 15%, depending of the amount of applied tensile strain.
- 6. The **subthreshold swing** of a MOSFET can be improved by the application of **strain**.
- 7. The Ioff current cannot be influenced by strain.
- 8. A very thin channel in a SOI MOSFET can be considered a technology booster (i.e. improves some of the performance aspects at same dimensions of the transistor).
- 9. The **multi-gate transistor** architectures are not technology boosters.
- 10. Scaling of channel dimensions is in itself a technology booster for CMOS.
- 11. Using a **carbon nanotube with higher carrier mobility** instead of a silicon channel in a gate-all-around nanowire FET is a technology booster.
- 12. The use of 2D-material channels in MOSFET is NOT a technology booster. Motivate with physics arguments of bandgap and mobility why this is true or not true.

Problem 2: Tunnel FET as Steep Slope Switch basics

The Tunnel FET is a gated p-i-n diode device operating in reversed bias regime and exploiting quantum-mechanical band-to-band tunneling. Select the correct properties of this steep slope device:

- 1. Dennard scaling rules applies to both MOSFETs and Tunnel FETs.
- 2. A Tunnel FET with InAs source and same geometry and dimensions as an all-silicon Tunnel FET has a lower Ion current.
- 3. An optimized Tunnel FET (high Ion and low Ioff) should be asymmetrical from the point of drain and source materials because an identical band-gap at source and drain can never optimize both Ion and Ioff.
- 4. The temperature dependence trend of subthreshold characteristics of Tunnel FET is very similar to the one of MOSFETs made of same semiconductor material; the subthreshold slope degrades with the temperature increase.
- 5. The quantum- mechanical tunneling effec exploited Tunnel FETs involves probability calculations for electrons to tunnel through a thin energy barrier.
- 6. Carrier mobility plays a key role in the transport characteristics of Tunnel FETs. Therefore materials with higher carrier mobility like III-V and Ge are suitable for these devices.
- 7. The effect of dimension (gate length, for instance) variability is expected to be quasi-identical on the Id-Vg and Id-Vd characteristics of Tunnel FETs and MOSFETs (consider how these characteristics change when the channel length is divided by a factor of x2, for instance).
- 8. The Electron-Hole Bilayer Tunnel FET is a Density of States switch that can achieve a steeper transition between off and on than a conventional Tunnel FET because the gate-controlled electrostatic field and the tunneling paths are aligned.
- 9. Tunnel FET exploits a discrete charge conduction principle (electrons tunnel one by one from the conduction to the valence band).
- 10. Tunnel FET can be scaled more aggressively that MOSFET because they have no short channel effects.

<u>Problem 3</u>: Trap-assisted tunneling effect, digital, analog, sensor and other applications of Tunnel FETs.

Select the correct statements about the Tunnel FETs from the list below:

- 1. Trap-Assisted Tunneling (TAT) is a phenomenon that depends on the *density of electrically-active traps* at both the oxide-to-channel interface and at the tunneling junctions. These densities of traps should be lower than 10¹² eV⁻¹cm⁻² to have a good tunnel FET.
- 2. Trap-Assisted Tunneling (TAT) is a phenomenon that does not depend on temperature but only on the energy levels of traps.
- 3. Trap-Assisted Tunneling (TAT) is cancelled when the temperature is increasing.
- 4. The steep-slope of Tunnel FETs is normally steeper at higher levels of currents.
- 5. At low voltage and low current levels Tunnel FETs can offer higher analog amplification than CMOS. Support your answer with an approximate calculation of gm/Id limit at 300K in MOSFETs and compare it with what a Tunnel FET with a slope of 10mV/decade at 300K can achieve as gm/Id.
- 6. Tunnel FET can be used to design more energy efficient hybrid CMOS-TFET multicore processor architecture. The computing tasks assigned to Tunnel FETs are the ones requiring high-performance (HP) specifications.
- 7. Leakage, Ioff, current of Tunnel FETs decreases at cryogenic (sub-77K) temperatures.
- 8. A charge sensor exploiting a tunnel FET operated in the sub-Vth region of Id-VG characteristics would offer a better current sensitivity to an elementary charge variation on the device gate.
- 9. Tunnel FET otput characteristics do saturate by pinch-off, like in MOSFETs. In case you disagree with this statement, what do you think is the saturation mechanisms of Id-Vd of tunnel FETs.
- 10. Tunnel FETs cannot be used to build 1T (one transistor) Active Pixel Sensors for imagers (optical sensing) because of their too small off-currents.